

A-level PHYSICS (7408/3BA)

Paper 3 - Section B (Astrophysics)

Specimen 2014	Morning	Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet
- a question paper / answer book for Section A.

Instructions

- Answer all questions.
- Show all your working.
- The total time for both sections of this paper is 2 hours.

Information

• The maximum mark for this section is 35.

Please write cle	early, in block	capitals,	to allow c	haracter o	computer	recogr	nition.		
Centre number			Candidate	number					
Surname									
Forename(s)									
Candidate sign	ature								

2

Answer **all** questions in this section.

- The concave mirrors used in some reflecting telescopes can suffer from spherical aberration.
- 0 1 · 1 Draw a diagram to show what is meant by spherical aberration when produced by a concave mirror.

1 . 2 The International Ultraviolet Explorer (IUE) and the Gran Telescopio Canarias (GTC) are two examples of reflecting telescopes.

Table 1 summarises some of the properties of the two telescopes.

Table	1
--------------	---

Name	IUE	GTC
Objective Diameter	0.45 m	10.4 m
Location	Geosynchronous Earth orbit	Earth's surface, 2300 m above sea level.
Spectrum detected	Ultraviolet	Visible and Infrared
Typical wavelength detected	2.0 x 10 ⁻⁷ m	1.0 x 10 ⁻⁶ m

Compare the two telescopes in terms of their location, collecting power and minimum angular resolution.

Include calculations to support your comparisons.

[6 marks]

Location

- · Light needs to travel through the atmosphere to reach the GTC (but not the IVE), so less light received
- · IUE requires its own power source (whereas
 GTC does not), and is more difficult to access

Collecting Power

 $D_{GTC} = \frac{10.4}{0.45} \times D_{IUE} \Rightarrow P_{GTC} = (\frac{10.4}{0.45})^2 \times P_{IUE} = 530P_{IUE}$ Glecting power of GTC is 530 times that of IUE

=> Collects much brighter images

Minimum Angular Resolution

 $AR_{min} \propto \frac{1}{D} = \frac{1}{D}$

OGTC DIVE DOTC DOTC DOTC

 $= \frac{2 \times 10^{-7} \times 10.4}{1 \times 10^{-6} \times 0.45} = 4.6$

- · Gorc is 4.6 times better at resolving an image
- · Larger diameter gives a clearer image, so GTC is professed.

QWC V

Missing a section (or not giving a strong enough argument) would lose 1-2 marks (per sections) or .

	4
0 1 . 3	The Charge Coupled Device (CCD) is an important part of the detection system of many modern telescopes due to its high quantum efficiency.
	Explain what is meant by quantum efficiency and compare the quantum efficiency of a CCD with that of the eye.
	Quartum efficiency = number of arriving photons being detected total number of arriving photons
	QE & CCD > 80%, QE & eye ~ 1% /
i	

0 2

The Summer Triangle consists of three stars, Altair, Deneb and Vega. Some of the properties of the three stars are summarised in **Table 2**.

Some of the properties of the three stars are summarised in Table 2.

Table 2

Table 2

			ANDINOMA STATES
	Altair	Deneb	Vega
surface temperature / K	7700	8500	9600
apparent magnitude	0.77	1.25	0.03
absolute magnitude	2.21	-8.38	0.60

0.77-2.21 = -1.44 1.25-(-8.38) = 9.63 0.03-0.60 = -0.57

0 2

1 The three stars belong to the same spectral class.

State and explain which spectral class they belong to.

[2 marks]

· Spectral class A V

· This class has a temperature range of 7500K to 11,000KV

0 2 . 2 Deduce which of the three stars appears brightest.

[2 marks]

· Lowest apparent magnitude gives brightest star · · Vega is brightest (as its apparent magnitude is lowest) ✓

0 2 . 3 Calculate the distance from Earth to the closest of the three stars

 $m-M=5\log_{10}(40)$ Altair is closest, [3 marks] as its 'm-M' is most negative

$$\frac{-1.44}{5} = \log_{10}(\frac{4}{10})$$

 $\frac{d}{10} = 10^{-1.4}$ $d = 10 \times 10^{-1.44}$ d = 5.152

7

0 2 . 4 Deduce which of the three stars is the largest.

[3 marks]

P= OAT - temperature

· Deneb has the largest power output, as its absolute magnitude is the most negative (so it is the brightest)

· A more powerful star at the same temperature must have a larger surface area (and therefore be brops)
· Denelo is the largest V

0 2 . 5 Calculate the wavelength of the peak in the black body radiation curve of Altair.

[2 marks]

 $=3.8\times10^{-7}$ m

wavelength = 3.8×10⁻⁷ m

0 4	In 1999 a planet was discovered orbiting a star in the constellation of Pegasus.						
0 4 . 1	State one reason why it is difficult to make a direct observation of this planet.						
	· Planet is small and far away; not big enough for resolution of telescopes v Reflected light from planet is negligible						
0 4 . 2	The initial discovery of the planet was made using the radial velocity method which involved measuring a Doppler shift in the spectrum of the star.						
	Explain how an orbiting planet causes a Doppler shift in the spectrum of a star. [2 marks]						
	· Planet and star orbit a common centre of mass, so star moves closer to and further from us						
	· Wavelength of light from the star is shifted <						
0 4 . 3	The discovery was confirmed by measuring the variation in the apparent magnitude of the star over a period of time.						
	Explain how an orbiting planet causes a change in the apparent magnitude of a star. Sketch a graph of apparent magnitude against time (a light curve) as part of your answer. [3 marks]						
	>t						
	· When the planet moves in front of the star. it absorbs some of the star's light, so less						
	it absorbs some of the star's light, so less						
	light reaches the observer on Earth \						
	·Apparent magnitude is determined from the amount of light received at Earth /						
	END OF QUESTIONS						

There are no questions printed on this page.				
Copyright © 2014 AQA and its licensors. All rights reserved.				